
Handwritten Arabic Digits Recognition
Using Neural Networks

Authors:

Khalid Al-Muqbil

Supervisor:

Dr. Nasser Alshammari

College of Computer and Information Sciences

Jouf University

April, 2019

Project in Brief

Project Title: Handwritten Arabic Digits Recognition Using Neural

Networks

Organization: Jouf University

Undertaken By: Khalid Mohammed Al-Muqbil Email By: khamuq-

bil.gmail.com

Supervised By: Dr. Nasser Alshammari Email By: nashamri@ju.edu.sa

i

Acknowledgment

I am highly indebted to Dr. Nasser Alshammari for his guidance and con-

stant supervision as well as for providing necessary information regarding the

project and also for his support in completing the project.

My thanks and appreciations also go to our colleagues in developing the

project and people who have willingly helped us out with their abilities.

ii

Declaration

We hereby declare that this software, neither as a whole nor as a part has been

copied out from any source. It is further declared that we have developed this

software and accompanied report entirely on the basis of our personal efforts.

If any part of this project is proved to be copied out from any source or

found to be reproduction of some other. We will stand by the consequences.

No portion of the work presented has been submitted in support of any

application for any other degree or qualification of this or any other university

or institute of learning.

NAME: .

SIGNATURE: .

NAME: .

SIGNATURE: .

iii

Abstract

The task of recognizing handwritten digits is a well-established and impor-

tant research area in machine and deep learning and many research efforts has

been dedicate to it. However, recognizing handwritten Arabic digits is lacking

compared to their English counterparts. In this study, we present a Convo-

lutional Neural Network (CNN) model to classify handwritten Arabic digits.

We evaluated the accuracy of the model using MADBase dataset, which is

an Arabic dataset that resembles the famous MNIST dataset. MADBase

consists of 60,000 training samples and 10,000 testing samples. The accu-

racy of our model reaches 99.35% which could be considered state-of-the-art

accuracy amount currently published models that use MADBase.

iv

Contents

Project in Brief i

Acknowledgment ii

Declaration iii

Abstract iv

1 Introduction 1

1.1 Aim . 3

1.2 Objectives . 4

2 Literature Review 5

3 Methodology 9

3.1 Tools and Libraries . 9

3.2 Dataset . 13

4 Implementation and Results 15

4.1 Graphical User Interface . 15

4.2 Results and Discussion . 18

5 Conclusion 21

Appendix 22

v

List of Figures

1.1 Where Deep learning fits in the general field of AI [7]. 2

1.2 Typical neural network structure. 3

2.1 The CNN architecture used in [5]. 7

2.2 The confusion matrix of the CNN model made by [5]. 8

3.1 A ReLU activation function. 12

3.2 A ReLU activation function. 13

3.3 Sample of digits in MADBase. 14

4.1 The overall architecture of the application. 16

4.2 The web interface of the application. 17

4.3 The predictions produced by the application. 18

4.4 The CNN model architecture. 19

4.5 The confusion matrices of the model. 20

4.6 The training history accuracy and loss. 20

vi

List of Source Codes

1 Imported libraries and reading the dataset. 23

2 Exploring the dataset. 23

3 A helper function to fix the rotation of the digits. 24

4 Preparing the data and plotting the first 100 digits. 24

5 Normalizing the features’ values. 24

6 Importing Keras and setting some parameters and reshaping

the data. 25

7 Splitting the training data to traning and validation sets. . . . 25

8 The CNN model. 26

9 Reducing the learning rate when there is not meaningful learn-

ing. 27

10 Data augmentaion parameters. 27

11 The model parameters. 28

12 Training the data without augmentation. 29

13 Training the data with augmentation. 29

14 Pinting the results on the validation and test sets. 29

15 Validation Confusion Matrix. 30

16 Testing Confusion Matrix. 31

17 The training history. 32

vii

Chapter 1

Introduction

Recognition in various fields is an important field in our time. It provides

us a lot of time and effort, such as recognition of letters and numbers, faces

recognition and pictures. The identification of handwritten numbers is im-

portant and helps to facilitate services and resolve some problems in our time.

With the development of the devices contributed to a lot of the application of

some of the theories proved and that has been addressed in a lot of dedicated

endeavors in our time is prohibited, we have created a smart system capable

of recognizing the Arabic numbers or (Indian) written by hand.

1

CHAPTER 1. INTRODUCTION 2

Figure 1.1: Where Deep learning fits in the general field of AI [7].

In recent years, Convolutional Neural Networks (CNN) have received

increased attention as they are able to consistently outperform other ap-

proaches in virtually all fields of Machine Learning. Deep learning (DL) is a

hierarchical structure network which simulates the human brain’s structure

to extract the data’s features. Figure 1.1 shows how DL fits into the big

picture of the Artificial Intelligence field. There are various DL architectures

such as convolutional deep neural networks, deep belief networks, recurrent

neural networks and stacked autoencoders. These algorithms allow comput-

ers and machines to model our world well enough to exhibit intelligence.

Figure 1.2 shows a typical DL neural network structure.

Recognition is an area that covers various fields such as, face recogni-

tion, finger print recognition, character recognition, numerals recognition,

etc. Handwritten Digit Recognition system (HDR) is an important compo-

CHAPTER 1. INTRODUCTION 3

nent in many applications; check verification, office automation, business,

postal address reading and printed postal codes and data entry applications

are few examples. The recognition of handwritten digits is a more difficult

task due to the different handwriting styles of the writers. Deep learning

techniques have achieved state-of-the-art performance in computer vision,

speech recognition, and in natural language processing. This research fo-

cuses on recognizing Arabic Handwritten digits using a CNN model.

Figure 1.2: Typical neural network structure.

1.1 Aim

The aim of this project is to develop a neural network model that is capable

of recognizing handwritten Arabic digits. The model should be trained on

sufficiently sized database made by human volunteers and evaluated against

other highly regarded model that perform the same task.

CHAPTER 1. INTRODUCTION 4

1.2 Objectives

To achieve the aim of this project, the following objectives are identified:

1. Conduct a literature review of current state-of-the-art approaches to

recognize Arabic handwritten digits using neural networks based tech-

niques.

2. Select or create an appropriate Arabic digits dataset.

3. Build a new CNN model to classify the Arabic digits.

4. Evaluate the accuracy of the model and compare it against other pub-

lished models.

Chapter 2

Literature Review

Before we began implementing any classifiers, we wanted to investigate what

material already existed in the domain of digits recognition. This dataset was

created MADbase [10], and consists of 70,000 images of Arabic digits. These

are divided into a training set of 60,000 images and a test set of 10,000. This

seems to be the largest dataset for this task available in the literature. This

makes it an ideal choice for training the network and fine-tuning parame-

ters. Furthermore, as discussed in detail in the next section, previous results

obtained from this dataset allow for comparison with the results presented

in this manuscript. It is worth noting that this dataset is a modified ver-

sion of an equivalent dataset called ADbase, which contains the same images

with different image size. To create MADbase, ADbase images were resized

and transformed from binary to grayscale to be equivalent to MNIST. While

the MADbase dataset deals with digits, the Arabic Handwritten Character

Dataset (AHCD) [5] includes 16,800 images of isolated characters divided

in training set of 13,440 and a test set of 3,360 images. This seems to be

the largest dataset available for this classification task. Regarding previous

results, [11] presented a method for recognition of handwritten Arabic digits

based on the extraction of Gabor-based features and Support Vector Ma-

chines (SVMs). The dataset used in this case contained 21,120 samples pro-

5

CHAPTER 2. LITERATURE REVIEW 6

vided by 44 writers. The average classification accuracy rates obtained were

of 99.85% and 97.94% using three scales and five orientations and four scales

and six orientations respectively. [1] applied several classification methods to

the MADbase dataset. Their best result was obtained with a Radial Basis

Function Support Vector Machine (RBF SVM), with which a two-stage clas-

sification was performed. In the first stage, several customized features were

extracted from a similar dataset by the researchers and then used as input

for the RBF SVM. The classifier was tuned to maximize the classification

accuracy, which had a final value of 99.48%. This value corresponds to the

best parameter combination. [4] used a small dataset of 600 digit images to

obtain a 99% recognition rate using a technique based on Loci characteristics.

[15] proposed an approach for Arabic Digit recognition using neural networks

and training through backpropagation. The dataset used in this case was also

small, and the classification accuracy obtained was 96%. [16] obtained a test

classification accuracy of 88% using a dataset of 3,510 digit images, by using

a three-level classifier consisting of SVM, Fuzzy C Means and Unique Pixels.

[14] presented two methods for enhancing the recognition of Arabic Hand-

written Digits. The methods combine fuzzy logic pattern classification to

counting the number of ends of the digit shapes to obtain a classification test

accuracy of 95% for some fonts. [2] , using the ADbase dataset, obtained an

85.26% classification accuracy by using Dynamic Bayesian Networks (DBN).

CHAPTER 2. LITERATURE REVIEW 7

Figure 2.1: The CNN architecture used in [5].

In 2016, [5] presented a method to recognize, Arabic digits using a convo-

lutional neural network. The result shows that the proposed method provides

a recognition accuracy of overall than 99,15% for a MADBase handwritten

database. Figure 2.1 shows the CNN model architecture the researchers used

in their work. Figure 2.2 shows the results obtained for each digit.

CHAPTER 2. LITERATURE REVIEW 8

Figure 2.2: The confusion matrix of the CNN model made by [5].

Chapter 3

Methodology

In this chapter, we will present the methods of this research project and de-

scribe the main stages to collect data, build the neural network, and validate

the results and accuracy of the proposed application.

3.1 Tools and Libraries

Python [13] will be the main programming language used in this project due

to the rich libraries and tools in its ecosystem. There are several libraries

that are needed to accomplish the objectives of this research. We will be

using the Keras [3] library to build the model. Keras is capable of running

on top of TensorFlow, Microsoft Cognitive Toolkit, Theano, or PlaidML. We

will use Matplotlib [8] and SeaBorn library [18] for data visualization. Other

libraries such as Numpy [17] and Pandas [12] will be used. The standard

Pyhton library also has many useful modules that will allow us to perform

the necessary steps for this project such as importing and analyzing data.

To measure the accuracy of the model, we will follow the standard workflow

for most classification tasks.

The dataset will be split into training and testing sets. The split ratio is

10%. which we shall more broadly address in it next section.

9

CHAPTER 3. METHODOLOGY 10

Keras will allow us constructing a Neural Network model, In Keras (Con-

volutional) Conv2D layers, these parameters are the first arguments passed

to the layer: The model type that we will be using is Sequential. Sequential

is the easiest way to build a model in Keras. It allows you to build a model

layer by layer. Each layer has weights that correspond to the layer the follows

it. Conv2D (output depth, (window height, window width)). A convolution

works by sliding these windows of size 3 Ö 3 over the 3D input, feature

map, stopping at every possible location, and extracting the 3D patch of

surrounding features (shape (window height, window width, input depth)).

Each such 3D patch is then transformed (via a tensor product with the same

studied weight matrix, called the convolution kernel) into a 1D vector of

shape (output depth,). All of these vectors are then spatially reassembled

into a 3D output map of shape (height, width, output depth). Every spatial

location in the output feature map corresponds to the same location in the

input feature map.

The Flattens layer: Flattens the input. Does not affect the batch size.

If inputs are shaped (batch,) without a channel dimension, then flattening

adds an extra channel dimension and output shapes are (batch, 1). after

Convolution layers, we would need to ‘unstack’ all this multidimensional

tensor into a very long 1D tensor. we can achieve this using Flatten. In

short, which we used to convert a multidimensional tensor into a single 1D

tensor.

The Max-Pooling operation. In the convent example, you may have no-

ticed that the size of the feature maps is halved after every MaxPooling2D

layer. For instance, before the first MaxPooling2D layers, the feature map is

26 Ö 26, but the MaxPooling operation halves it to 13 Ö 13. That is the role

of max pooling: to aggressively down sample feature maps, much like strided

convolutions. MaxPooling consists of extracting windows from the input fea-

ture maps and outputting the max value of each channel. It’s conceptually

CHAPTER 3. METHODOLOGY 11

similar to convolution, except that instead of transforming local patches via

a learned linear transformation (the convolution kernel), they’re transformed

via a hardcoded max tensor operation. A big difference from convolution is

that MaxPooling is usually done with 2 Ö 2 windows and stride 2 Next, we

define a pooling layer that takes the max called MaxPooling2D. It is config-

ured with a pool size of 2Ö2. the feature map is 13 Ö 13, but the MaxPooling

operation halves it to 6 Ö 6. Dropout layer: Regularizing neural networks

is an important task to reduce overfitting. Dropout has been a widely-used

regularization trick for neural networks.

In Convolutional neural networks CNN, dropout is usually applied to the

fully connected layers. Meanwhile, the regularization effect of dropout in

the Convolutional layers has not been thoroughly analyzed in the literature.

which is indeed proved as a powerful generalization method. So we will ex-

plain how it works in short, that dropout in CNN regularizes the networks

by adding noise to the output feature maps of each layer, yielding robustness

to variations of images. Based on this observation, we propose a stochastic

dropout whose drop ratio varies for each iteration. Furthermore, we propose

a new regularization method which is inspired by behaviors of image filters.

Rather than randomly drop the activation, we selectively drop the activation

which have high values across the feature map or across the channels. Exper-

imental results validate the regularization performance of selective max-drop

and stochastic dropout is competitive to the dropout or spatial dropout.

Dropout is a regularization technique, which aims to reduce the complexity

of the model with the goal to prevent overfitting. Using dropout, you ran-

domly deactivate certain units neurons in a layer with a certain probability

p from a Bernoulli distribution, but this yet another hyperparameter to be

tuned. The effect is that the network becomes less sensitive to the specific

weights of neurons. This, in turn, results in a network that is capable of

better generalization and is less likely to overfit the training data. therefore

CHAPTER 3. METHODOLOGY 12

not be the neural network will not be able to rely on particular activation

in a given feed-forward pass during training. As a consequence, the neural

network will learn different, redundant representations. the network cannot

rely on the particular neurons and the combination (or interaction) of these

to be present. Another nice side effect is that the training will be faster.

Batch normalization mitigates the effects of varied layer inputs. By nor-

malizing the output of neurons, the activation function will only receive in-

puts close to zero. This ensures a non-vanishing gradient, solving the second

problem. Batch normalization is a method we can use to normalize the inputs

of each layer, in order to fight the internal covariate shift problem. because

the distribution of the activations is constantly changing during training.

This slows down the training process because each layer must learn to adapt

them selves to a new distribution in every training step.

Figure 3.1: A ReLU activation function.

The Dense layer is a standard layer type that works for most cases. In

a dense layer, all nodes in the previous layer connect to the nodes in the

current layer. We have 128 nodes in each of our input layers. Activation is the

activation function for the layer. An activation function allows models to take

into account nonlinear relationships. The activation function we will be using

is ReLU or Rectified Linear Activation as shown in Figure 3.1. Although it is

two linear pieces, it has been proven to work well in neural networks. Because

CHAPTER 3. METHODOLOGY 13

we are attacking a classification problem, you’ll end the network with a single

unit The second layer needs a number of classes (a Dense layer of size 10) and

a softmax activation function as shown in Figure 3.2. This unit will encode

the probability that the network is looking at one class or the other.

Figure 3.2: A ReLU activation function.

3.2 Dataset

The MADBase is a dataset developed by Sherif Abdelazeem, Ezzat Al-Sherif,

for evaluating machine learning models on the handwritten digit classification

problem. The dataset was constructed from a number of scanned document

dataset available from The Electronics Engineering Department American

University in Cairo. This is where the name for the dataset comes from, as

the Modified ADBase or MADBase dataset. Each image is a 28 by 28 pixel

square (784 pixels total). A standard spit of the dataset is used to evaluate

and compare models, where 60,000 images are used to train a model and a

separate set of 10,000 images are used to test it on as shown in Figure 3.3.

CHAPTER 3. METHODOLOGY 14

Figure 3.3: Sample of digits in MADBase.

Chapter 4

Implementation and Results

This chapter presents how we implemented the CNN model and how we

built the interface and architecture of the application. Also, the chapter will

presents the results of the accuracy of our model.

4.1 Graphical User Interface

There are several libraries that are needed to accomplish the objectives of

this research. We will be using the Flask [6] library to build the back-end

web service. Flask is web framework written in Python that allows the users

to develop web application. Javascript [9] will be used in limited situations.

To make the application accessible from different platforms and from

different devices, the application will use a web interface. This will make the

application cross-platform application and will allow us to make the interface

responsive the different screen sizes available.

15

CHAPTER 4. IMPLEMENTATION AND RESULTS 16

Figure 4.1: The overall architecture of the application.

To make the application accessible for any device and operating system,

we will use web interface. Figure 4.1 shows the overall architecture of the

application. It is divided into two parts, the front-end and the back-end.

The front-end will be the actual web interface as shown in Figure 4.2. This

interface currently is developed using HTML, Javascript and CSS. In the

future other options are available such as developing native applications for

Android and/or iOS. This is possible because we are relying on an Applica-

tion Programming Interface (API) to perform the necessary functions of the

application.

CHAPTER 4. IMPLEMENTATION AND RESULTS 17

Figure 4.2: The web interface of the application.

Figure 4.2 shows the web interface of the application and how it presents

the predictions of the model. The interface features a blank space for the

user to enter the digits they want to be recognized and the application will

convert the image into the appropriate format for our model. The model will

generate several predictions and present them to the user as shown in ??.

CHAPTER 4. IMPLEMENTATION AND RESULTS 18

Figure 4.3: The predictions produced by the application.

4.2 Results and Discussion

Figure 4.4 shows the detailed layers of our CNN model and for the full pa-

rameters of our model consult Listing 11.

CHAPTER 4. IMPLEMENTATION AND RESULTS 19

Figure 4.4: The CNN model architecture.

CHAPTER 4. IMPLEMENTATION AND RESULTS 20

Figure 4.5: The confusion matrices of the model.

Figure 4.6: The training history accuracy and loss.

Figure 4.5 shows the results of evaluating the performance of our model

on MADBase with confusion matrices of the validation and testing sets.

Listing 16 and Listing 15 shows the actual code used to produce these figures

We used 20 epochs (as shown in Listing 6) and Figure 4.6 shows the

progress of training during these epochs. Our model reached an accuracy of

99.35% on the testing dataset without using any data augmentation tech-

niques. This is to make the comparison with the work of [5] as fair as possible

since they did not use data augmentation. However, with data augmentation

our model reached an accuracy of 99.75%. The settings we used for doing

data augmentation is listed in Listing 10.

Chapter 5

Conclusion

Our model was able to achieve competitive scores to other published models

on the same dataset. The other models’ accuracy scored 99.15% accuracy

without data augmentation. Using the same parameters, our model scored

99.35% accuracy without data augmentation. With data augmentation, our

model reached 99.75% accuracy. These results gives us confidence in the ef-

fectiveness of our CNN model. However, there were some concerns regarding

the quality of the data in MADBase itself especially the data for the number

zero. Yet, when we fixed all of our model parameters and settings and made

them as close as possible to the parameters of the best published model we

found [5], our model on average scored 0.20% points higher than it.

For future work, we would like to test our model on other datasets and

compare it against other DL architectures and models. As mentioned earlier,

there were some concerns regarding MADBase and one possible future work is

publishing an improved version of MADBase or creating a whole new dataset

to help improve the research efforts in the Arabic handwritten recognition

field.

21

Appendix

This appendix lists all the code used in this project.

22

CHAPTER 5. CONCLUSION 23

1 import numpy as np

2 import pandas as pd

3 import matplotlib.pyplot as plt

4 from collections import Counter

5 from sklearn.metrics import confusion_matrix

6 import itertools

7 import seaborn as sns

8

9 x_train = pd.read_csv("MADBase/x_train.csv", header=None)

10 y_train = pd.read_csv("MADBase/y_train.csv", header=None,

names=['label'])↪→

11 x_test = pd.read_csv("MADBase/x_test.csv", header=None)

12 y_test = pd.read_csv("MADBase/y_test.csv", header=None,

names=['label'])↪→

13

14 print("x_train shape", x_train.shape)

15 print("y_train shape", y_train.shape)

16 print("x_test shape", x_test.shape)

17 print("y_test shape", y_test.shape)

Listing 1: Imported libraries and reading the dataset.

1 x_train.head()

2 y_train.head()

3 sns.countplot(y_train['label'])

4 sns.countplot(y_test['label'])

Listing 2: Exploring the dataset.

CHAPTER 5. CONCLUSION 24

1 def rot_digit(digit):

2 return np.fliplr(np.rot90(digit, axes=(1,0)))

Listing 3: A helper function to fix the rotation of the digits.

1 x_train = x_train.astype('float32').values

2 y_train = y_train.astype('float32').values

3 x_test = x_test.astype('float32').values

4 y_test = y_test.astype('float32').values

5

6 plt.figure(figsize=(12,10))

7 x, y = 10, 10

8 for i in range(100):

9 plt.subplot(y, x, i+1)

10 plt.imshow(rot_digit(x_train[i].reshape((28,28))),

interpolation='nearest')↪→

11 plt.show()

Listing 4: Preparing the data and plotting the first 100 digits.

1 x_train = x_train/255.0

2 x_test = x_test/255.0

3

4 print('x_train shape:', x_train.shape)

5 print(x_train.shape[0], 'train samples')

6 print(x_test.shape[0], 'test samples')

Listing 5: Normalizing the features’ values.

CHAPTER 5. CONCLUSION 25

1 import keras

2 from keras.models import Sequential

3 from keras.layers import Dense, Dropout, Flatten, Conv2D,

MaxPool2D↪→

4 from keras.layers.normalization import BatchNormalization

5 from keras.preprocessing.image import ImageDataGenerator

6 from keras.callbacks import ReduceLROnPlateau

7 from sklearn.model_selection import train_test_split

8 batch_size = 32

9 num_classes = 10

10 epochs = 20

11 input_shape = (28, 28, 1)

12

13 X_train = x_train.reshape(x_train.shape[0], 28, 28,1)

14 X_test = x_test.reshape(x_test.shape[0], 28, 28,1)

Listing 6: Importing Keras and setting some parameters and reshaping the

data.

1 y_train = keras.utils.to_categorical(y_train, num_classes)

2 y_test = keras.utils.to_categorical(y_test, num_classes)

3 X_train, X_val, Y_train, Y_val = train_test_split(X_train,

y_train, test_size = 0.1, random_state=42)↪→

Listing 7: Splitting the training data to traning and validation sets.

CHAPTER 5. CONCLUSION 26

1 model = Sequential()

2 model.add(Conv2D(32, kernel_size=(3, 3),activation='relu',

3 kernel_initializer='lecun_normal', input_shape=input_shape))

4 model.add(MaxPool2D((2, 2)))

5 model.add(Dropout(0.20))

6 model.add(Conv2D(64, (3, 3), activation='relu',

padding='same', kernel_initializer='lecun_normal'))↪→

7 model.add(MaxPool2D(pool_size=(2, 2)))

8 model.add(Dropout(0.25))

9 model.add(Conv2D(64, (3, 3), activation='relu',

padding='same', kernel_initializer='lecun_normal'))↪→

10 model.add(Dropout(0.25))

11 model.add(Conv2D(128, (3, 3), activation='relu',

padding='same', kernel_initializer='lecun_normal'))↪→

12 model.add(Dropout(0.25))

13 model.add(Conv2D(128, (3, 3), activation='relu',

padding='same', kernel_initializer='lecun_normal'))↪→

14 model.add(Dropout(0.25))

15 model.add(Flatten())

16 model.add(Dense(128, activation='relu'))

17 model.add(BatchNormalization())

18 model.add(Dropout(0.25))

19 model.add(Dense(num_classes, activation='softmax'))

20

21 model.compile(loss=keras.losses.categorical_crossentropy,

22 optimizer=keras.optimizers.Adam(),

23 metrics=['accuracy'])

Listing 8: The CNN model.

CHAPTER 5. CONCLUSION 27

1 learning_rate_reduction = ReduceLROnPlateau(monitor='val_acc',

2 patience=2,

3 verbose=1,

4 factor=0.5,

5 min_lr=0.0001)

Listing 9: Reducing the learning rate when there is not meaningful learning.

1 datagen = ImageDataGenerator(

2 featurewise_center=False,

3 samplewise_center=False,

4 featurewise_std_normalization=False,

5 samplewise_std_normalization=False,

6 zca_whitening=False,

7 rotation_range=15,

8 zoom_range = 0.1,

9 width_shift_range=0.1,

10 height_shift_range=0.1,

11 horizontal_flip=False,

12 vertical_flip=False)

Listing 10: Data augmentaion parameters.

CHAPTER 5. CONCLUSION 28

1 model.summary()

2 ___

3 Layer (type) Output Shape Param #

4 ===

5 conv2d_1 (Conv2D) (None, 26, 26, 32) 320

6 max_pooling2d_1 (MaxPooling2 (None, 13, 13, 32) 0

7 dropout_1 (Dropout) (None, 13, 13, 32) 0

8 conv2d_2 (Conv2D) (None, 13, 13, 64) 18496

9 max_pooling2d_2 (MaxPooling2 (None, 6, 6, 64) 0

10 dropout_2 (Dropout) (None, 6, 6, 64) 0

11 conv2d_3 (Conv2D) (None, 6, 6, 64) 36928

12 dropout_3 (Dropout) (None, 6, 6, 64) 0

13 conv2d_4 (Conv2D) (None, 6, 6, 128) 73856

14 dropout_4 (Dropout) (None, 6, 6, 128) 0

15 conv2d_5 (Conv2D) (None, 6, 6, 128) 147584

16 dropout_5 (Dropout) (None, 6, 6, 128) 0

17 flatten_1 (Flatten) (None, 4608) 0

18 dense_1 (Dense) (None, 128) 589952

19 batch_normalization_1 (Batch (None, 128) 512

20 dropout_6 (Dropout) (None, 128) 0

21 dense_2 (Dense) (None, 10) 1290

22 ===

23 Total params: 868,938

24 Trainable params: 868,682

25 Non-trainable params: 256

Listing 11: The model parameters.

CHAPTER 5. CONCLUSION 29

1 history = model.fit(X_train, Y_train,

2 batch_size=batch_size,

3 epochs=epochs, verbose=1,

validation_data=(X_val, Y_val))↪→

Listing 12: Training the data without augmentation.

1 datagen.fit(X_train)

2 history_aug = model.fit_generator(

3 datagen.flow(X_train,Y_train, batch_size=batch_size),

4 epochs = epochs, validation_data = (X_val,Y_val),

5 verbose = 1, steps_per_epoch=X_train.shape[0] //

batch_size,↪→

6 callbacks=[learning_rate_reduction],)

Listing 13: Training the data with augmentation.

1 final_loss, final_acc = model.evaluate(X_val, Y_val,

verbose=0)↪→

2 print("Final loss: {0:.6f}, final accuracy:

{1:.6f}".format(final_loss, final_acc))↪→

3

4 final_loss, final_acc = model.evaluate(X_test, y_test,

verbose=0)↪→

5 print("Final loss: {0:.6f}, final accuracy:

{1:.6f}".format(final_loss, final_acc))↪→

Listing 14: Pinting the results on the validation and test sets.

CHAPTER 5. CONCLUSION 30

1 # Predict the values from the validation dataset

2 Y_pred_val = model.predict(X_val)

3

4 # Convert predictions classes to one hot vectors

5 Y_pred_val_classes = np.argmax(Y_pred_val, axis = 1)

6

7 # Convert validation observations to one hot vectors

8 Y_true_val = np.argmax(Y_val, axis = 1)

9

10 # compute the confusion matrix

11 confusion_mtx = confusion_matrix(Y_true_val,

Y_pred_val_classes)↪→

12

13 # plot the confusion matrix

14 plot_confusion_matrix(confusion_mtx, classes = range(10))

Listing 15: Validation Confusion Matrix.

CHAPTER 5. CONCLUSION 31

1 # Predict the values from the validation dataset

2 Y_pred_test = model.predict(X_test)

3

4 # Convert predictions classes to one hot vectors

5 Y_pred_test_classes = np.argmax(Y_pred_test, axis = 1)

6

7 # Convert validation observations to one hot vectors

8 Y_true_test = np.argmax(y_test, axis = 1)

9

10 # compute the confusion matrix

11 confusion_mtx = confusion_matrix(Y_true_test,

Y_pred_test_classes)↪→

12

13 # plot the confusion matrix

14 plot_confusion_matrix(confusion_mtx, classes = range(10))

Listing 16: Testing Confusion Matrix.

CHAPTER 5. CONCLUSION 32

1 h = history_aug

2 #h = history

3

4 print(h.history.keys())

5 accuracy = h.history['acc']

6 val_accuracy = h.history['val_acc']

7 loss = h.history['loss']

8 val_loss = h.history['val_loss']

9 epochs = range(len(accuracy))

10 plt.plot(epochs, accuracy, 'bo', label='Training accuracy')

11 plt.plot(epochs, val_accuracy, 'b', label='Validation

accuracy')↪→

12 plt.title('Training and validation accuracy')

13 plt.legend()

14 plt.show()

15 plt.figure()

16 plt.plot(epochs, loss, 'bo', label='Training loss')

17 plt.plot(epochs, val_loss, 'b', label='Validation loss')

18 plt.title('Training and validation loss')

19 plt.legend()

20 plt.show()

Listing 17: The training history.

References

[1] Sherif Abdleazeem and Ezzat El-Sherif. Arabic handwritten digit recog-

nition. International Journal of Document Analysis and Recognition

(IJDAR), 11(3):127–141, 2008.

[2] Jawad H AlKhateeb and Marwan Alseid. Dbn-based learning for arabic

handwritten digit recognition using dct features. In 2014 6th inter-

national conference on Computer Science and Information Technology

(CSIT), pages 222–226. IEEE, 2014.

[3] François Chollet et al. Keras. https://keras.io, 2015.

[4] Ouafae El Melhaoui, Mohammed Maroc, Mohamed El Hitmy, and

Fairouz Lekhal. Arabic numerals recognition based on an improved

version of the loci characteristic. 2011.

[5] Ahmed El-Sawy, EL-Bakry Hazem, and Mohamed Loey. Cnn for hand-

written arabic digits recognition based on lenet-5. In International Con-

ference on Advanced Intelligent Systems and Informatics, pages 566–575.

Springer, 2016.

[6] Flask. Flask the microframework for python, 2018. http://flask.

pocoo.org.

[7] Chollet Francois. Deep learning with python, 2017.

33

https://keras.io
http://flask.pocoo.org
http://flask.pocoo.org

REFERENCES 34

[8] J. D. Hunter. Matplotlib: A 2d graphics environment. Computing In

Science & Engineering, 9(3):90–95, 2007.

[9] Javascript. Javascript, 2018. https://www.javascript.com.

[10] MADBase. Madbase. the arabic handwritten digits databases, by sherif

abdelazeem, ezzat el-sherif,. http://datacenter.aucegypt.edu/shazeem/.

[11] Sabri A Mahmoud. Arabic (indian) handwritten digits recognition using

gabor-based features. In 2008 International Conference on Innovations

in Information Technology, pages 683–687. IEEE, 2008.

[12] Wes McKinney. Data structures for statistical computing in python. In

Stéfan van der Walt and Jarrod Millman, editors, Proceedings of the 9th

Python in Science Conference, pages 51 – 56, 2010.

[13] Python. Python programming language, 2018. https://www.python.

org.

[14] Majdi Salameh. Arabic digits recognition using statistical analysis for

end/conjunction points and fuzzy logic for pattern recognition tech-

niques. World of Computer Science & Information Technology Journal,

4(4), 2014.

[15] P Pandi Selvi and T Meyyappan. Recognition of arabic numerals with

grouping and ungrouping using back propagation neural network. In

2013 International Conference on Pattern Recognition, Informatics and

Mobile Engineering, pages 322–327. IEEE, 2013.

[16] Maen Takruri, Rami Al-Hmouz, and Ahmed Al-Hmouz. A three-level

classifier: fuzzy c means, support vector machine and unique pixels for

arabic handwritten digits. In 2014 World Symposium on Computer Ap-

plications & Research (WSCAR), pages 1–5. IEEE, 2014.

https://www.javascript.com
https://www.python.org
https://www.python.org

REFERENCES 35

[17] S. van der Walt, S. C. Colbert, and G. Varoquaux. The numpy array:

A structure for efficient numerical computation. Computing in Science

Engineering, 13(2):22–30, March 2011.

[18] Michael Waskom, Olga Botvinnik, Paul Hobson, John B. Cole, Yaroslav

Halchenko, Stephan Hoyer, Alistair Miles, Tom Augspurger, Tal

Yarkoni, Tobias Megies, Luis Pedro Coelho, Daniel Wehner, cynddl, Erik

Ziegler, diego0020, Yury V. Zaytsev, Travis Hoppe, Skipper Seabold,

Phillip Cloud, Miikka Koskinen, Kyle Meyer, Adel Qalieh, and Dan

Allan. seaborn: v0.5.0 (november 2014), November 2014.

	Project in Brief
	Acknowledgment
	Declaration
	Abstract
	Introduction
	Aim
	Objectives

	Literature Review
	Methodology
	Tools and Libraries
	Dataset

	Implementation and Results
	Graphical User Interface
	Results and Discussion

	Conclusion
	Appendix

